POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Physicochemistry of polymers [S2IMat1>FizPolimer]

Course			
Field of study Materials Engineering		Year/Semester 1/1	
Area of study (specialization)		Profile of study general academic	;
Level of study second-cycle		Course offered in polish	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 30	Laboratory classe 0		Other (e.g. online) 0
Tutorials 0	Projects/seminars 0	5	
Number of credit points 3,00			
Coordinators dr inż. Kinga Mencel kinga.mencel@put.poznan.pl		Lecturers	

Prerequisites

Basic knowledge of materials science of polymeric materials. The ability to think logically, to use information obtained from basic and specialist literature in the field of materials science. Student understanding the need to learn and acquire new material knowledge

Course objective

Understanding the physicochemical basics of solid and melt polymeric materials

Course-related learning outcomes

Knowledge:

1. student should distinguish types and groups of polymers - [k_w04]

2. the student should formulate the basic physical laws in connection with the specific properties and structure of polymers - [k_w02 k_w04]

3. the student should formulate the basic chemical laws in connection with the specific properties of polymers - [k_w02 k_w05]

Skills:

1. the student is able to define the dependence of the structure and properties of a polymer material - $[k_u09, k_u11]$

2. the student is able to propose a method of assessing the properties and structure of a polymer material - [k_u10]

Social competences:

1. the student is aware of the importance of the use of plastics in the economy and social life - [k_k02]

2. the student is open to cooperation with other specialists (technologists) - [k_k03, k_k05]

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows: Lecture:

Written exam at the end of the semester (credit if at least 50.1% of correct answers are obtained). Up to 50.0% - ndst, from 50.1% to 60.0% - dst, from 60.1% to 70.0% - dst +, from 70.1 to 80.0 - db, from 80.1% up to 90.0% - db +, from 90.1% - very good.

Programme content

Lecture:

- 1. Functionality of monomers
- 2. Polymer synthesis methods: polymerization and copolymerization, polycondensation, polyaddition
- 3. Cross-linking of polymers: homocross-linking, heterocross-linking
- 4. Methods of chemical modification of the properties of polymers
- 5. Basic properties of amorphous and crystalline polymers
- 6. Methods of assessing the crystal structure
- 7. Crystallization, crystal structures, unit cell,
- 8. WAXS wide-angle diffraction in polymer research
- 9. Macromolecular orientation, direct and indirect description
- 10. Thermal and calorimetric methods in the evaluation of polymers
- 11. Mechanical models of liquids and solids? relaxation, creeping
- 12. Mechanical properties? tensile curve, elastic and plastic deformations

Teaching methods

Lecture: multimedia presentation, presentation illustrated with examples given on the board.

Bibliography

Basic

1. Kelar K., Ciesielska D.: Fizykochemia polimerów wybrane zagadnienia, Wyd. Politechnika Poznańska 1998

2. Żuchowska D.: Polimery konstrukcyjne, WNT, W-wa, wyd. II, 2002

3. Przygocki W.: Metody fizyczne badań polimerów, WNT, Warszawa, 1990

4. Kelar K.: Modyfikacja polimerów, Wydawnictwo Politechniki Poznańskiej Poznań, 1992 Additional

1. Pielichowski J., Puszyński A.: Technologia tworzyw sztucznych, WNT, Warszawa, 1998

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,00
Classes requiring direct contact with the teacher	45	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	0	0,00